
Exercises on Oracles, Relativization, and the

Polynomial Hierarchy

CSCI 6114 Fall 2021

Joshua A. Grochow

September 9, 2021

An oracle Turing machine is a TM equipped with an additional tape,
the oracle tape, and three additional states: Q,Y,N (for “query”, “yes”,
“no”). If it enters the Q state, then it queries the oracle about the string x
on the oracle tape. The oracle answers the query in the next time step with
either YES or NO: if the oracle says YES, the TM enters state Y , and if the
oracle says NO then enters state N . When an oracle machine is instantiated
with a particular language L for the oracle, the oracle’s answers are correctly
answering whether x (the string on the oracle tape) is in L. In this case we
speak of machine M with oracle L, sometimes denoted ML.

Given a class of oracle TMs M and a class C of languages, we define MC

to be the class of languages L such that there exists O ∈ C (for “oracle”)
and a machine M ∈ M such that MO decides L correctly: L = L(MO).
Many standard complexity classes such as P,NP,PSPACE,EXP have such
canonical corresponding classes of oracle TMs that we often write, e.g., PC

for the class of languages decided by polynomial-time oracle Turing machines
with some oracle from C (rather than giving a different notation for the
class of polynomial-time oracle TMs). Such classes are colloquially called
relativizable, because it is “clear” what it means to relativize them to an
oracle.

1. Show that PP = P and NPP = NP.

2. Show that PNP ̸= NP unless NP = coNP (and thus PH collapses).

3. Show that PNP = PcoNP, and more generally PC = PcoC .

4. Show that NP ∪ coNP ⊆ PNP ⊆ Σ2P ∩ Π2P.

1



5. (a) Show that Σ2P = NPNP.

(b) More generally, show that ΣkP = NPΣk−1P = Σk−1P
NP and ΠkP =

coNPΠk−1P.

6. We say that a statement relativizes if it remains true in the presence
of any oracle.

(a) Show that P ⊆ NP ⊆ PSPACE relativizes, that is, for any oracle
O, PO ⊆ NPO ⊆ PSPACEO.

(b) What happens when we relativize the statement P ⊆ NP ⊆
PSPACE to a PSPACE-complete oracle?

7. Use the oracle characterization of PH to give an alternative, simpler
proof that if ΣkP = Σk+1P, then PH = ΣkP.

8. Use the oracle characterization of PH to give a simple proof that Ex-
ercise 4 relativizes to give: ΣkP ∪ ΠkP ⊆ PΣkP ⊆ Σk+1P ∩ Πk+1P.

9. Show that NPNP∩coNP = NP. This is an example of lowness:

Definition 1. Given a relativizable complexity class C, a language
L is low for C if CL = C. Low(C) is the class of all such languages:
Low(C) = {L|CL = C}.

10. The previous exercise showed that NP ∩ coNP ⊆ Low(NP). Show that
this is an equality.

11. The (relativized) Karp–Lipton Theorem says that for any oracle X, if
NPX ⊆ PX/poly then PHX = Σ2P

X . Use the fact that this theorem
relativizes, together with what we know about the relationship between
sparse sets and P/poly to show that PH collapses if and only if there
exists a sparse set S such that PHS collapses.

Resources

• There is also an oracle X relative to which PX ̸= NPX (Baker, Gill,
& Solovay, SIAM J. Comput., 1975). It’s worth thinking about how
you would construct such a thing! Hint: diagonalize against poly-time
Turing machines.

Combined with exercise 6(b), this shows that any proof resolving the
P versus NP question must be non-relativizing.

2

https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037


The proof is covered in detail in Sipser §9.2, Du & Ko §4.3–4.8, Arora
& Barak §3.5.

• I believe it is an open question whether there exists an oracleX relative
to which PH “looks like” the arithmetic hierarchy, in the sense that:
(a) PHX is infinite, but (b) PΣkP

X
= Σk+1P

X ∩ Πk+1P
X for all k.

• PH defined in terms of oracles: Homer & Selman §7.4, Du & Ko Ch. 3,
Arora & Barak §5.5.

• General introduction to oracles: Homer & Selman §3.9 (in the context
of computability, no poly-time bounds), Du & Ko §3.1 for nondeter-
ministic poly-time oracle TMs, Arora & Barak §3.5

• Du & Ko §4.3–4.8 talk about other relativizations of NP and §9.6 talks
about relativized PH.

• High-level discussions of relativization and its role in complexity: Moore
& Mertens §9.4, Wigderson §5.1

3


