Exercises on Oracles, Relativization, and the Polynomial Hierarchy
 CSCI 6114 Fall 2021

Joshua A. Grochow

September 9, 2021

An oracle Turing machine is a TM equipped with an additional tape, the oracle tape, and three additional states: Q, Y, N (for "query", "yes", "no"). If it enters the Q state, then it queries the oracle about the string x on the oracle tape. The oracle answers the query in the next time step with either YES or NO: if the oracle says YES, the TM enters state Y, and if the oracle says NO then enters state N. When an oracle machine is instantiated with a particular language L for the oracle, the oracle's answers are correctly answering whether x (the string on the oracle tape) is in L. In this case we speak of machine M with oracle L, sometimes denoted M^{L}.

Given a class of oracle TMs \mathcal{M} and a class \mathcal{C} of languages, we define $\mathcal{M}^{\mathcal{C}}$ to be the class of languages L such that there exists $O \in \mathcal{C}$ (for "oracle") and a machine $M \in \mathcal{M}$ such that M^{O} decides L correctly: $L=L\left(M^{O}\right)$. Many standard complexity classes such as P, NP, PSPACE, EXP have such canonical corresponding classes of oracle TMs that we often write, e.g., $\mathrm{P}^{\mathcal{C}}$ for the class of languages decided by polynomial-time oracle Turing machines with some oracle from \mathcal{C} (rather than giving a different notation for the class of polynomial-time oracle TMs). Such classes are colloquially called relativizable, because it is "clear" what it means to relativize them to an oracle.

1. Show that $P^{P}=P$ and $N P^{P}=N P$.
2. Show that $P^{N P} \neq N P$ unless $N P=$ coNP (and thus $P H$ collapses).
3. Show that $\mathrm{P}^{N P}=\mathrm{P}^{c o N P}$, and more generally $\mathrm{P}^{\mathcal{C}}=\mathrm{P}^{\mathrm{coC}}$.
4. Show that $N P \cup$ coNP $\subseteq P^{N P} \subseteq \Sigma_{2} P \cap \Pi_{2} P$.
5. (a) Show that $\Sigma_{2} P=N P^{N P}$.
(b) More generally, show that $\Sigma_{k} P=N P^{\Sigma_{k-1} P}=\Sigma_{k-1} P^{N P}$ and $\Pi_{k} P=$ $\mathrm{coNP}{ }^{\Pi_{k-1}} \mathrm{P}$.
6. We say that a statement relativizes if it remains true in the presence of any oracle.
(a) Show that $\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}$ relativizes, that is, for any oracle $O, \mathrm{P}^{O} \subseteq \mathrm{NP}^{O} \subseteq \mathrm{PSPACE}^{O}$.
(b) What happens when we relativize the statement $\mathrm{P} \subseteq \mathrm{NP} \subseteq$ PSPACE to a PSPACE-complete oracle?
7. Use the oracle characterization of PH to give an alternative, simpler proof that if $\Sigma_{k} \mathrm{P}=\Sigma_{\mathrm{k}+1} \mathrm{P}$, then $\mathrm{PH}=\Sigma_{\mathrm{k}} \mathrm{P}$.
8. Use the oracle characterization of PH to give a simple proof that Exercise 4 relativizes to give: $\Sigma_{k} \mathrm{P} \cup \Pi_{k} \mathrm{P} \subseteq \mathrm{P}^{\Sigma_{k} \mathrm{P}} \subseteq \Sigma_{\mathrm{k}+1} \mathrm{P} \cap \Pi_{\mathrm{k}+1} \mathrm{P}$.
9. Show that NP $P^{N P \cap c o N P}=N P$. This is an example of lowness:

Definition 1. Given a relativizable complexity class \mathcal{C}, a language L is low for \mathcal{C} if $\mathcal{C}^{L}=\mathcal{C}$. Low (\mathcal{C}) is the class of all such languages: $\operatorname{Low}(\mathcal{C})=\left\{L \mid \mathcal{C}^{L}=\mathcal{C}\right\}$.
10. The previous exercise showed that $N P \cap \operatorname{coNP} \subseteq \operatorname{Low}(N P)$. Show that this is an equality.
11. The (relativized) Karp-Lipton Theorem says that for any oracle X, if $\mathrm{NP}^{X} \subseteq \mathrm{P}^{X} /$ poly then $\mathrm{PH}^{X}=\Sigma_{2} \mathrm{P}^{X}$. Use the fact that this theorem relativizes, together with what we know about the relationship between sparse sets and $\mathrm{P} /$ poly to show that PH collapses if and only if there exists a sparse set S such that PH^{S} collapses.

Resources

- There is also an oracle X relative to which $\mathrm{P}^{X} \neq \mathrm{NP}^{X}$ (Baker, Gill, \& Solovay, SIAM J. Comput., 1975). It's worth thinking about how you would construct such a thing! Hint: diagonalize against poly-time Turing machines.
Combined with exercise 6(b), this shows that any proof resolving the P versus NP question must be non-relativizing.

The proof is covered in detail in Sipser $\S 9.2$, Du \& Ko §4.3-4.8, Arora \& Barak §3.5.

- I believe it is an open question whether there exists an oracle X relative to which PH "looks like" the arithmetic hierarchy, in the sense that: (a) PH^{X} is infinite, but (b) $\mathrm{P}^{\Sigma_{\mathrm{k}} \mathrm{P}^{X}}=\Sigma_{\mathrm{k}+1} \mathrm{P}^{X} \cap \Pi_{\mathrm{k}+1} \mathrm{P}^{X}$ for all k.
- PH defined in terms of oracles: Homer \& Selman §7.4, Du \& Ko Ch. 3, Arora \& Barak §5.5.
- General introduction to oracles: Homer \& Selman $\S 3.9$ (in the context of computability, no poly-time bounds), Du \& Ko $\S 3.1$ for nondeterministic poly-time oracle TMs, Arora \& Barak $\S 3.5$
- Du \& Ko §4.3-4.8 talk about other relativizations of NP and $\S 9.6$ talks about relativized PH.
- High-level discussions of relativization and its role in complexity: Moore \& Mertens $\S 9.4$, Wigderson $\S 5.1$

